Projecting reponses of major North American vegetation types to climate change

Stephen Huysman, Connor Nelle

Problem Background

- Climate is a primary driver of the distributions of plant species
- How will different vegetation types respond to climate change?
- Relevant question to land managers, foresters, ranchers, policymakers, outdoor recreationists, etc.

Research Questions

- What are the climatic drivers of distributions of major vegetation types across the Contiguous United States (CONUS)?
- How are the distributions of vegetation types likely to shift under future climates?

Climatic Water Balance

Views climate in a way closer to the mechanisms that affect plants and animals than temperature and precipitation lone

The NPS Gridded Water Balance Dataset (Tercek 2021) provides historical and projected:

- Actual Evapotranspiration (AET) magnitude and length of growing conditions favorable to plants
- Climatic Water Deficit (CWD) measure of drought stress
- Potential Evapotranspiration (PET)
- Rain Liquid water fraction of Precipitation
- Runoff
- Soil Water

Climatic Water Balance

Distributions of major North American Vegetation types vs CWD and AET from Stephenson 1998

Our data

Random Forest

Fit using R package ranger

Predictors:

- NPS Gridded Water Balance Model 2000-2019 Mean:
 - Spring/Summer/Fall/Winter AET,
 PET, CWD, Rain, Runoff, Soil Water
 - Annual Accumulated Snow Water Equivalent
- Soil Water Holding Capacity

Response:

 Current Land Cover (2019 NLCD Land Cover class), Artificial land cover types and water cover removed

```
Classification
Type:
Number of trees:
                                   500
Sample size:
                                   4851134
Number of independent variables:
                                   26
Mtry:
                                   5
Target node size:
Variable importance mode:
                                   impurity
Splitrule:
                                   gini
OOB prediction error:
                                   25.85 %
```

Confusion Matrix for Historical Data

True ↓ \ Predicted \rightarrow	Perennial Ice/Snow	Barren Land	Decid. Forest	Evergr. Forest	Mixed Forest	Shrub/ Scrub	Grassland	Woody Wetlands	Emergent Herbaceous Wetlands
Perennial Ice/Snow	145	254	0	103	0	61	23	0	0
Barren Land	194	37937	4614	4699	717	20473	4192	1514	781
Decid. Forest	0	893	529102	31509	41874	12533	21883	30880	4242
Evergr. Forest	45	2239	40637	571069	31592	111521	32485	49149	1769
Mixed Forest	0	318	80829	38768	56313	6984	4068	20793	616
Shrub/Scrub	45	11181	14667	127315	6899	1426354	91684	10425	3119
Grassland	18	2300	21885	49183	4979	94499	729565	9205	5304
Woody Wetlands	0	706	42599	53515	18077	12472	8915	196872	10184
Emergent Herbaceous Wetlands	0	571	7295	4096	1008	8330	14756	15397	49896

Number of pixels classified as land cover types. Orange diagonal indicates correct predictions

Variable Importance (Impurity)

Variable	Importance
aet_summer	275533.6221
rain_summer	270917.5229
cwd_summer	224760.0964
runoff_spring	209007.051
runoff_fall	182627.9193
runoff_winter	175450.0742
rain_spring	165814.9098
rain_fall	164605.5208
aet_fall	159639.7219
pet_summer	145584.6716
rain_winter	138920.4598
cwd_spring	137486.0428
cwd_fall	137112.0661
pet_spring	128640.0846
pet_fall	125718.196
aet_spring	121946.8688

. . .

117401.8019
109382.6815
108529.4888
108344.3547
103570.0563
98123.11789
98066.31854
93224.37371
92594.93893
88778.36474

• •

Projecting Vegetation Distributions under Climate Change

- Use Random Forest model fit to historical water balance data (gridMET) to predict cover types on projected water balance data (MACA)
- MACA is downscaled using gridMET so the historical and projected data can be compared without bias correction
- Two scenarios for projections based on plausible greenhouse gas emissions pathways (see IPCC 2023 for more details)
 - RCP 4.5 Intermediate scenario: Emissions decrease by ~2045
 - RCP 8.5 Worst-case scenario: "Business as usual"
- Projections were made for two future time periods
 - Mid-century (2040-2069)
 - End-century (2070-2099)

Current CONUS Cover Types on non-developed land

120°W

110°W

100°W

90°W

80°W

70°W

100°W

110°W

120°W

90°W

80°W

70°W

Projected change in area of cover types

Solid = RCP4.5, Dashed = RCP8.5

Conclusions

- The climatic water balance predicts distributions of some vegetation types well but is not sufficient to accurately predict all major vegetation types across CONUS alone.
 - An expansion of shrub/scrubland is likely under both emissions scenarios
 - Apparent stability of forest types at continental scale masks shifts in populations at finer scales
 - Projected expansions of woody wetlands and decline in mixed forest should be viewed with caution due to poor model performance in classifying these cover types.
- Projections were made using *ensemble* average conditions. Individual GCMs may reveal more variability in plausible future scenarios.

References

- IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115, doi: 10.59327/IPCC/AR6-9789291691647.
- Jon Dewitz. (2021). National Land Cover Database (NLCD) 2019 Products (ver. 3.0, February 2024) [Data set]. U.S. Geological Survey. https://doi.org/10.5066/P9KZCM54
- Hijmans R (2024). _terra: Spatial Data Analysis_. R package version 1.7-78, https://CRAN.R-project.org/package=terra.
- Marvin N. Wright, Andreas Ziegler (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1-17. doi:10.18637/jss.v077.i01
- Stephenson, N., 1998, Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales: Journal of Biogeography, v. 25, p. 855–870, doi:10.1046/j.1365-2699.1998.00233.x.
- Tercek, M.T., Thoma, D., Gross, J.E., Sherrill, K., Kagone, S., and Senay, G., 2021, Historical changes in plant water use and need in the continental United States: PLOS ONE, v. 16, p. e0256586, doi:10.1371/journal.pone.0256586.