

Mapping Climate and Disturbance Refugia for Conservation of Whitebark Pine

MS Thesis Defense

Stephen Huysman

Montana State University

May 16, 2025

1

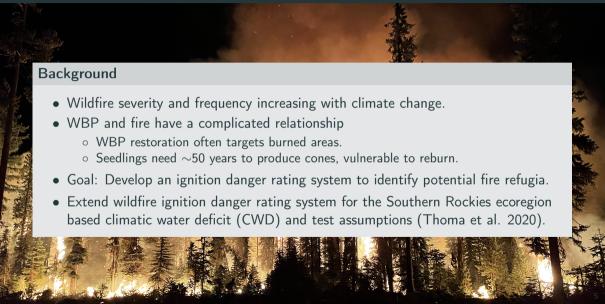
Acknowledgments

- Committee: Dr. Danielle Ulrich, Dr. Brian Smithers, Dr. David Thoma (and Dr. Mike Tercek)
- Kristin Legg (NPS I&M), Erin Shanahan (NPS I&M), Elizabeth Jamison
- Funding: NPS, ORISE, NRCC, Madsen family
- MSU Research Cyberinfrastructure Tempest research cluster
- My Family!

Outline

- 1. Context: Whitebark pine
- 2. Wildfire refugia in the GYE
- 3. Climatic drivers of white pine blister rust infection in WBP
- 4. Planting microsite selection using a high-resolution water balance model

Whitebark Pine (Pinus albicaulis Engelm.)



- Foundational and keystone species in high-elevation ecosystems.
- Precipitous decline: >50% dead as of 2016 (Goeking & Izlar 2018).
- Listed as Threatened under the Endangered Species Act (2023).

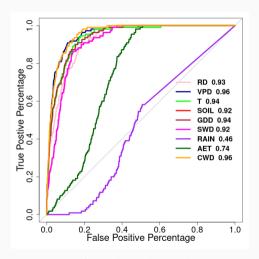
Major Threats

- Wildfire
- White Pine Blister Rust (WPBR)
- Mountain Pine Beetle (MPB)
- Climate Change

Chapter 1: Wildfire refugia in the Middle Rockies ecoregion

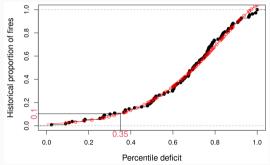
Wildfire ignition danger rating — Methods

Indicators of Dryness


Variable	Abbrev.	Units	Note
Average temperature	Т	°C	
Average relative dryness	RD	%	RD = 1 - RH
Vapor pressure deficit	VPD	kPa	
Actual evapotranspiration	AET	mm	Water use/favorable growing conditions
Climatic water deficit	CWD	mm	Drought stress
Soil moisture	SOIL	mm	
Soil water deficit	SWD	mm	SWD = WHC - SOIL
Rain	RAIN	mm	
Growing degree days	GDD	°C	Base temperature of 5.5 °C

Steps:

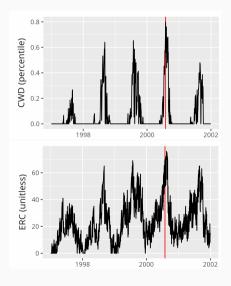
- Identify best predictors of wildfire ignition:
 - 1. Calculate 1-31 day rolling sums/means of dryness indicators.
 - 2. Normalize using percentile ranks.
 - Use the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) to find best classifiers of ignition and optimal rolling window width.
- Wildfire ignition danger rating: Identify conditions that are dry enough to burn.


Best performing dryness indicators

- Percentiles of 3-day rolling sums of CWD and VPD were best classifiers of ignition.
- CWD/VPD also the best classifiers of ignition in Thoma et al. 2020, but only 14-day rolling sums were tested.

ROC for 3-day rolling values

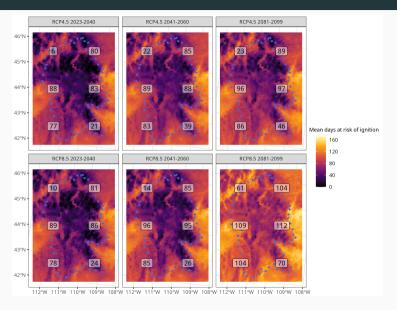
Identifying conditions that are dry enough to burn



Cumulative distribution of wildfires that burned at a percentile of 3-day sum of CWD or wetter

Select risk threshold based on management objectives:

- WBP planting requires conservative estimates of risk — percentile of dryness at or below which 10% of historical fires burned.
- Maximize opportunities to conduct prescribed burns — accepting conditions at or below which 30-40% of historical ignitions occurred could highlight more days as potentially viable.


Ours versus Theirs

Strengths of this approach

- Simplicity based on one measure of climate.
- Calibrated to local conditions at each pixel/location.
- Can be tuned for specific management objectives.
- Appears to perform favorably compared to other fire danger indices, such as NFDRS, but further analysis needed.

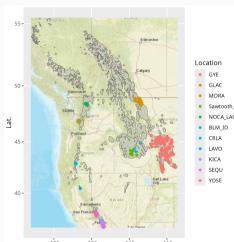
Projected Ignition Risk (GYE Forests)

- Increased fire risk across GYE by end-century.
- Larger increases under RCP8.5.
- Persistence of refugia only apparent under RCP4.5.

Wildfire refugia: Conclusions and Future Work

Conclusions

- Percentiles of 3-day rolling sums of CWD/VPD were the best classifiers of wildfire ignition in the Middle Rockies ecoregion.
- Increases in fire risk are projected, varying with emissions scenarios.


Future Work

- Test model in other ecoregions.
- Develop automated near-term forecast system (www.climateanalyzer.us/grsa_dash).
- Evaluate performance compared with other fire danger indices.

Chapter 2: Climatic drivers of white pine blister rust infection in WBP

Monitoring data

Lon.

Mean Aug/Sep climate and infection rates

	Monitoring Area	asP (mm)	asT (°C)	asVPD (kPa)	asRH (%)	Inf. rate (%)
	GYE	90.27	10.51	0.88	46.33	45.80
	GLAC	119.66	10.51	0.75	54.55	75.06
	MORA	104.58	10.54	0.60	62.41	46.71
	Sawtooth NF	60.25	11.52	0.99	43.09	11.57
	NOCA LACH	89.55	10.83	0.76	50.35	54.89
	BLM ID	69.12	11.44	0.89	49.05	46.84
	CRLA	49.74	12.15	0.83	55.14	43.24
_NF	LAVO	41.15	12.00	1.05	42.79	51.82
кСН	KICA	13.42	9.62	0.82	38.97	5.94
	SEQU	6.08	10.46	1.00	34.08	1.51
	YOSE	24.28	11.15	0.96	36.67	3.82
	Western U.S.	60.74	10.98	0.87	46.68	35.2

- 22,292 trees between 490 transects, monitored between 2000 and 2022.
- Thank you Erin Shanahan, EJ, and data contributors!

Spatially explicit logistic regression models

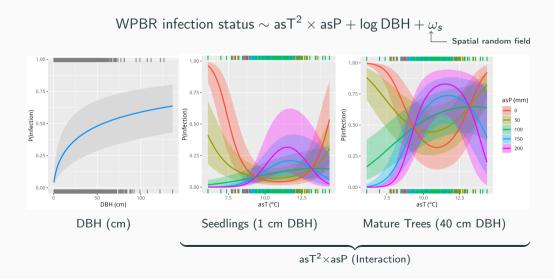
Response

WPBR status: Whether or not a tree was infected between 2000 and 2022

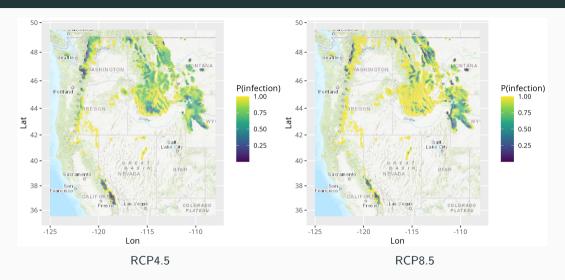
Predictors

- 2000-2022 August and September climate averages (Basidiospore transmission season)
 - Temperature (asT)
 - Precipitation (asP)
 - Relative humidity (asRH)
 - Vapor pressure deficit (asVPD)
- Tree size (log DBH)

Random Effects


Spatial random field — other spatially varying processes, spatial autocorrelation.

Model selection and performance


Model	AIC c	∆ AIC c
$asT^2 imes asP + logDBH$	17266.4	0.0
$asT^2 imes asRH + log DBH$	17292.7	26.3
asT imes asP + logDBH	17323.9	57.6
asT imes asRH + logDBH	17343.1	76.7
$asT^2 + log DBH$	17345.0	78.6
asT + asP + logDBH	17346.2	79.8
$asVPD^2 + log DBH$	17346.9	80.6
asP + logDBH	17350.6	84.2
asT + logDBH	17351.4	85.0
asT + asRH + log DBH	17353.0	86.6
asVPD + logDBH	17358.3	92.0
log DBH	17367.2	100.9
asRH + logDBH	17367.5	101.1
$asRH^2 + log DBH$	17367.9	101.5

- 8-fold CV shows strong model performance for top model
 - \circ 88.2% Specificity (True Negatives)
 - o 63.3% Sensitivity (True Positives)
 - $\circ \ 80.9\% \ Overall \ Accuracy$
- Model predictions at lower levels of Aug/Sep precipitation should be viewed with caution!

Effect of Climate and Tree Size on Disease Hazard

Projections of WPBR disease hazard in the GYE

Ensemble end-of-century probability of WPBR infection (Mature trees).

WPBR: Conclusions and future work

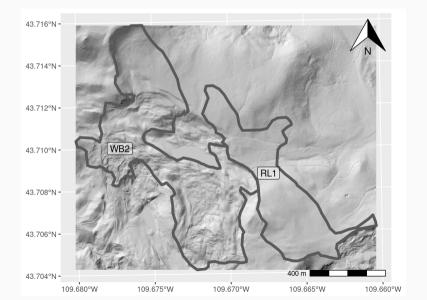
Conclusions

- WPBR infection across CONUS is driven by August/September Temperature and Precipitation.
- Projections show potential WPBR refugia; are they suitable climates for WBP?

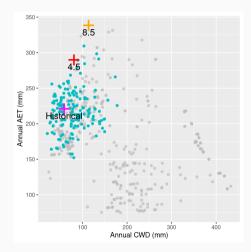
Future Work

- Extend analysis to Canada.
- Investigate biologically implausible temperature effect at low precipitation.

Chapter 3: Identifying optimal planting microsites

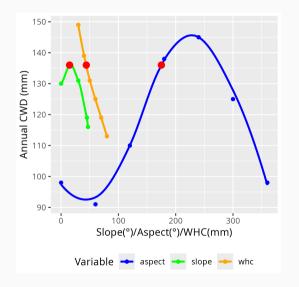

High-resolution water balance model

- Microsites are intuitively understood and used by tree planters.
- Gridded climate data (800m-4km) too coarse for individual seedling scale.
- Microclimates influenced by local topography and soils can buffer regional climate.
- Goal: Leverage high-resolution LiDAR terrain data to develop a 1 m water balance model to identify suitable microclimates for planting.
- Case study: Burroughs Creek, Shoshone NF, Wyoming, USA. Macro- and microclimate analysis

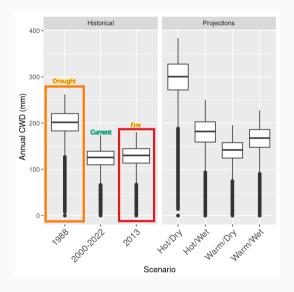


Seedling microsite created by snag Photo credit: Erin Shanahan (NPS)

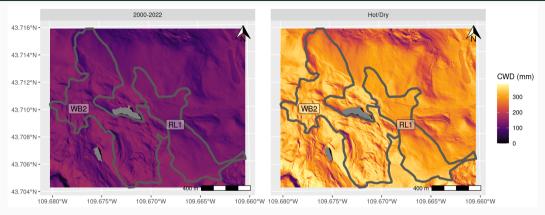
Case Study: Burroughs Creek, Shoshone NF, Wyoming, USA


Burroughs Creek Macroclimate

1 km scale historical AET/CWD (2000-2019) for WPBR monitoring points (grey) and GYE (blue), with historical and projected data for Burroughs Ck (crosses).


- 1 °C maximum mean annual temperature recommendation for planting WBP in the Northern Rockies (Bower & Aitken 2008).
 - Burroughs Ck barely exceeds this (4 km MACA).
- Water balance AET (water use) and CWD (drought stress) more effectively characterize the biophysical environment of plants than temperature and precipitation (Stephenson 1998).
- Macroclimate (1 km) water balance projections for Burroughs Ck are marginal to unfavorable.

Microclimate Sensitivity Analysis

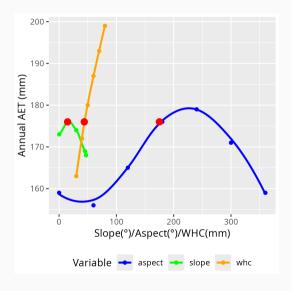

- **Soil WHC** is the strongest control on Actual Evapotranspiration (AET).
- Aspect is the strongest control on Climatic Water Deficit (CWD).
- Slope plays a smaller role for both.
- Highlights importance of local topoedaphic features.

Microclimatic Variability

- Increases in AET and CWD in all projections.
- Higher AET is associated with increased growth rates in WBP seedlings (Laufenberg 2020)
- High CWD is bad!
- \rightarrow Drought stress, fire risk.
- ightarrow Several projections of 2075-2099 average annual CWD are similar or higher than CWD in 1988 (drought year).

Microsites: Modeled CWD

- Model identifies fine-scale patterns in drought stress (CWD).
- North-facing slopes and high WHC areas show lower CWD.
- These patterns persist under future climate scenarios, identifying potential microrefugia.


Overall Conclusions

- Wildfire: Disturbance refugia are likely to persist in the GYE under lower emissions scenarios.
- WPBR: Geographic patterns of disease hazard are likely to shift in the future.
- Uncertainty in above projections due to uncertainty about future climate!
- Our high-resolution water balance model can help identify suitable planting microsites even in unfavorably macroclimates.

AET Sensitivity

